Structured Models from Structured Data: Emergence of Modular Information Processing within One Sheet of Neurons

نویسندگان

  • Cornelius Weber
  • Klaus Obermayer
چکیده

In our contribution we investigate how structured information processing within a neural net can emerge as a result of unsupervised learning from data. Our model consists of input neurons and hidden neurons which are recurrently connected and which represent the thalamus and the cortex, respectively. On the basis of a maximum likelihood framework the task is to generate given input data using the code of the hidden units. Hidden neurons are fully connected allowing for diierent roles to play within the unfolding time-dynamics of this data generation process. One parameter which is related to the sparsity of neuronal activation varies across the hidden neurons. As a result of training the net captures the structure of the data generation process. Trained on data which are generated by diierent mechanisms acting in parallel, the more active neurons will code for the more frequent input features. Trained on hierarchically generated data, the more active neurons will code on the higher level where each feature integrates several lower level features. The results imply that the division of the cortex into laterally and hierarchically organized areas can evolve to a certain degree as an adaptation to the environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Presenting a method for extracting structured domain-dependent information from Farsi Web pages

Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...

متن کامل

An Effective Path-aware Approach for Keyword Search over Data Graphs

Abstract—Keyword Search is known as a user-friendly alternative for structured languages to retrieve information from graph-structured data. Efficient retrieving of relevant answers to a keyword query and effective ranking of these answers according to their relevance are two main challenges in the keyword search over graph-structured data. In this paper, a novel scoring function is proposed, w...

متن کامل

CFD Simulation of Dry and Wet Pressure Drops and Flow Pattern in Catalytic Structured Packings

Type of packings and characteristics of their geometry can affect the flow behavior in the reactive distillation columns. KATAPAK SP is one the newest modular catalytic structured packings (MCSP) that has been used in the reactive distillation columns, recently. However, there is not any study on the hydrodynamics of this packing by using computational fluid dynamics. In the present work, a 3D ...

متن کامل

The Impact of Learning Styles on the Iranian EFL Learners' Input Processing

This research study explored the impact of learning styles and input modalities on the second language (L2) learners' input processing (IP). This study also sought to appraise the usefulness of Processing Instruction (PI) and its components in relation to the learners' learning styles and input modalities. To this end, 73 male and female Iranian EFL learners from Islamic Azad University, North ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000